示例
文档问答
示例
文档问答
在这个示例中,我们将构建一个聊天机器人问答应用。我们将学习如何:
- 上传文档
- 从文件中创建向量嵌入
- 创建一个能够显示用于生成答案的来源的聊天机器人应用
这个示例灵感来自于 LangChain 文档
前提条件
这个示例有额外的依赖项。你可以通过以下方式安装:
pip install langchain langchain-community chromadb tiktoken openai langchain-openai
然后,你需要这里去创建一个 OpenAI 密钥。
国情咨文文件可从这里获取
使用 LangChain 进行对话式文档问答
qa.py
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import (
ConversationalRetrievalChain,
)
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.memory import ConversationBufferMemory
import chainlit as cl
os.environ["OPENAI_API_KEY"] = (
"OPENAI_API_KEY"
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a text file to begin!",
accept=["text/plain"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
with open(file.path, "r", encoding="utf-8") as f:
text = f.read()
# Split the text into chunks
texts = text_splitter.split_text(text)
# Create a metadata for each chunk
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
# Create a Chroma vector store
embeddings = OpenAIEmbeddings()
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(model_name="gpt-4o-mini", temperature=0, streaming=True),
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(
content=source_doc.page_content, name=source_name, display="side"
)
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()
尝试一下
chainlit run qa.py
然后,你可以将任何 .txt
文件上传到用户界面并提问。如果你使用的是 state_of_the_union.txt
,你可以问诸如 总统对 Ketanji Brown Jackson 说了什么?
之类的问题。